Tevatron Microwave Schottky

Andreas Jansson Fermilab

Outline

- System overview
- Recent measurement results
 - Tunes and momentum spreads
 - Emittance and chromaticity
 - Single bunch measurements
- Conclusions and outlook

3/28/2005

Hardware overview

Tevatron Schottky Signal Processing

Software overview

A. Jansson

Schottky spectra & analysis

- Tunes from peak positions
- Momentum spread from average width
- Chromaticity from differential width
- · Emittance from average band power

Tune during stores

Clearly see beam-beam effect on pbars (and protons).

Plans to make slow feedback base on this data.

Tev tune history

- Average tunes are logged continuously every store.
- Can use to correlate with efficiencies, lifetimes etc

Tunes from SDA

Tune "tracking"

 Measured tune tracks changes in set tunes very well.

Momentum spread

 Momentum spread measurement show good agreement with bunch length measurement.

. 0003 .0003 T: TULPHP .00025 .00025 .0002 .00015 .00015

Horizontal channel

Vertical channel

Bunch length (SBD)

NO fudge factors!!!

Thu 24-MAR-2005 17:09:40

#3989

Emittance

- Qualitative emittance agreement after recent improvements
- Not yet calibrated

— Schottky Horizontal

— Sync lite Horizontal Institution

Schottky Vertical

Sync lite Vertical

T1 = Thu Mar 24 14:24:40 2005

T2 = Fri Mar 25 13:38:13 2005

Fri 25-MAR-2005 14:54:48

Chromaticity

- Hard to make parasitic comparative measurements, so systematic study has not yet been done.
- Measured chromaticities during a store and compare to traditional measurement on next ramp (with low intensity, uncoalesced beam).
- Appear to be missing factor ~2 in vertical plane for both species.
- Not yet understood (could be real, could be a instrument problem).

Single phar bunch measurement

Pbar bunch #29 Intensity: 19 109

Emittance: ~17 π mm mrad

Single bunch tunes

bunch-by-bunch pbar tunes

Note characteristic beam-beam signature on first and last bunches in each train!

Single bunch momentum spreads

bunch-by-bunch momentum spread

NO fudge factors!!!

Single bunch emittance

bunch-by-bunch emittance

NB. Wire fly was several hours before Schottky measurement! Schottky emittance scale uncalibrated (arbitrary scaling).

DOE Review, March 29-31, 2005

15

Conclusions

- 1.7 GHz Schottky tunes are measured and logged continuously during stores.
- Considering implementing slow tune feedback based on this data.
- Very good momentum spread agreement.
- Qualitative emittance agreement. Not yet calibrated.
- Chromaticity measurement need more work.
- Can measure tune of a single 15 10⁹ pbar bunch to 5 10⁻⁴!!!

Back up slides

Single bunch emittance

bunch-by-bunch betatron band power

3/28/2005

High frequency vs low frequency Schottky

- In a low frequency Schottky spectra, can separate normal modes by frequency
- Microwave Schottky rely only on directional (hor/ver) sensitivity.

3/28/2005

Simple coupling theory

- Measured tune is a weighted average of the two modes.
- Weight is given by inclination angle a.
- Tends to bring measured tunes back together.
- Cancels coupling tune separation exactly in simple model.
- · "We measure set tunes"

Coupling observations

- Difference in measured tunes from 21MHz and 1.7 GHz Schottky show effect of coupling.
- More detailed analysis to follow, using e.g. measured coupled beta functions.

NB. Coupling affects emittance and chromaticity as well

